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The temperature-concentration diagram of a star-branched macromolecule solution was constructed using 
scaling concepts. The quality of the solvent, solution concentration, the rigidity of star branches, their number 
and degree of polymerization were taken into account. The diagram obtained contains three regime types: Ix-- 
isolated stars in a dilute solution; IIx--a semidilute solution of star branches (subscript characterizes the 
volume interactions); and III--the close packed system of impermeable (or almost impermeable) stars. 
Quasiglobular regime III is characterized by the universal dependence of star size on the concentration of the 
solution c and degree of polymerization N: R~(N/c) 1/a independently of the quality of the solvent. 
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I N T R O D U C T I O N  

In our preceding paper 1 and in a paper by Daoud and 
Cotton 2 the scaling theory of conformations of star- 
branched macromolecules in a dilute solution has been 
developed. The purpose of the present paper is to 
generalize the results for the case of semidilute solution 
and to construct the temperature-concentration (T-c) 
diagram of state for a solution of star-branched 
macromolecules. 

Analysis of the behaviour of stars in a semidilute 
solution will proceed from the results obtained for 
isolated stars. A brief survey of these results is now given. 
The new theoretical papers on star conformations that 
have appeared since our earlier publication 1 will also be 
considered. 

Star parameters and characteristics 
Star-branched macromolecules consisting o f f  branches 

with n units in each branch and overall degree of 
polymerization N = n f  (Figure 1) will be considered. A 
chain sequence of length ao equal to the chain thickness d 
subsequently taken as unit length is chosen as the 
monomer unit. Let the asymmetry parameter of a chain 
segment be p=a/d>~ 1 (a is the length of the Kuhn 
segment) and let us call chains with p = 1 'flexible' and 
those with p >  1 'stiff. We will assume t h a t f  n and n/p>> 1 
and restrict ourselves to the consideration of asymptotic 
dependences omitting all the numerical coefficients. The 
mean-square radius of gyration Rx is taken as the 
characteristic of the star size. In the approximation used 
R x is equal to the mean-square end-to-end distance of 
each branch. Subscript x determined the external 
conditions (see next section on 'Diagram of state and 
conformations of isolated stars'). 

For isolated stars, two relative size characteristics are 
also considered: the coefficient of star contraction (with 
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respect to a linear chain with the same N) 

R2(star) 
gx = R 2 (linear) "~f- ~x (1) 

and the coefficient of swelling with respect to the Gaussian 
(x = (3) size 

2 R2(star) 
~t~ = R2(star) ,~fx (2) 

On the right-hand side of equations (1) and (2) these 
coefficients are shown as power dependences (which 
corresponds to the asymptotic limit) on the number of 
branches only because it is the dependences on f t h a t  are 
the subject of discussion (for further details see ref. 1). 

It follows from (1) and (2) that exponents fl and y are 
related to each other by a linear equation 

f lx+Tx=TG=l  (3) 

where it is taken into account that in the approximation 
used g G ~f  -1 (refs. 1 and 3). Further, since volume 
concentration of units in stars is higher than in linear 
chains, volume interactions (repulsion) should always 
affect the size of stars more markedly than those of linear 
chains. Hence, the Gaussian value YG = 1 is the limiting 
value, and if volume interactions exist, it might be 
expected that 

0 < 7x < 1 (4) 

where the left-hand inequality is evident. 

Diagram of state and conformations of isolated stars 
As already mentioned, the theory of conformations of 

isolated stars has been developed elsewhere 1'2. Although 
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swelling 2 Ctxo as well as intramolecular characteristics: the 
average concentration of units Exo in a star and the law of 
radial decrease in concentration Cxo(r). These resulis are 
considered in detail in ref. 1 and here only the following 
four points will be noted. 

(1) The stars are virtually always (at r ~> 0) in the swollen 
state, ~2 0 > 1. The only exception is the Gaussian region of 
states Ic. However, this region exists only for stars with a 
small number of semi-rigid branches f <  p3/2 near the O- 
point. 

(2) The data in Table 1 yield the values of the exponent y 
in equation (1) 

{ ~ x = + ,mf 

Yx= ½ x = O  
(5) 

in complete agreement with the estimations in inequality 
(4). It has been shown 1'2 that these values are in good 
agreement with both the experimental data and the 
Monte Carlo results. The results have been compared in 
detail with those of other theories in ref. 1. and the reasons 
for the discrepancies have also been analysed. It has been 
shown that the values of exponents 7x in equation (5) may 
be directly obtained according to Flory's scheme in the 
mean-field approximation. 

Some papers have recently appeared10,~ ~ in which the 
size of star-branched macromolecules and, correspond- 
ingly, exponents Yx have been calculated on the basis of 
the renormalization-group approach. In ref. 10 the use of 
the RG method to within the second order in the e 
expansion has yielded 7o = 1 and y + = 2v -~ 6. These results 

the specific application of scaling formalism in these 
papers differ slightly, the results coincide completely. 
Moreover, they are complementary to each other because 
ref. 2, in contrast to ref. 1, considers only the case p = 1, but 
on the other hand, more attention has been devoted to the 
structure of the dense nucleus of the star. 

Figure 2 shows a diagram of state for isolated stars 
reproducing that in ref. 1 (with additions according to ref. 
2). The diagram is based on a model for a layer of semi-stiff 
chains grafted with one end onto an impermeable spherical 
surface (star nucleus) 4'5 and on the well known 
relationships in the theory of semidilute solutions of 
macromolecules 6-9. The consequence of the model is the 
conclusion about the power increase in the correlation 
radius of density (blob size) with increasing distance from 
the nucleus. 

The diagram of isolated stars in Figure 2 in the case of a 
flexible chain p = 1 contains three regions of state Ix with 
x = ® , + , d .  In the region Io the star conformation is 
determined by ternary interactions of units; I + is the 
scaling region of pair interactions (a good solvent); Id 
corresponds to a star consisting only of a dense nucleus. 
For  semi-stiff chains, p > 1, a Gaussian region IG and the 
mean field region of pair interactions Imf appear (for 
further details see ref. 9). 

To avoid confusion it should be noted that in this paper 
we denote the regions of state in diagrams of Figure 2 by I x 
in order to emphasize the fact that they refer to isolated 
stars (symbols II x in ref. 1 emphasized the relationship of 
the states of a star to those of a semidilute solution of 
linear chains; for further details see ref. 1). 

Table I summarizes data on the size Rxo of isolated stars 
(subscript 0), the coefficients of star contraction gxo and 
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Figure 1 Star-branched macromolecule. Branch number f >  1, length 
of each branch n>> 1, overall degree of polymerization N=fn 
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Figure 2 Diagram of state of an isolat~l starlbranched 
macromolccule: (a) flexible chains, p=  1; (b) semi-stiff chains, p> I. 
Equations of region boundaries are given in the figures 
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Table 1 The parameters of isolated stars 

x R~o gxo ct20 Cxo Cxo( r ) 

+,  mf Na/5(zp)l/Sf- 2/5 f-4/5 N1/Sz2/Sp- 3/Sfl/5 N-a/~(zp)- a/sf6/5 f2/3(zp)- l/3r-4/3 
O N1/2pl/Sf -1/4 p-a/4f-l/2 p-a/4fl/2 N-1/2p-3/sfa/4 fl/Zp-1/4r-1 
G N 1/2p I/2f- 1/2 f -  1 1 N - 1/2p- 3/2f3/2 fp - 1 r-  1 

are inconsistent with estimations in inequality (4) and seem 
to be erroneous. Since in ref. 11 a scheme of the RG 
method is used in which only the first order in the e 
expansion is taken into account and which is inferior to 
that in ref. 10 with regard to the certainty of evaluation of 
the exponents, we suppose that at present the results in 
Table 1 and equation (5) are the most reliable of all. 

(3) Let us consider the radial dependence of density in a 
star. In the centre of the star a region with a constant high 
density exists: the nucleus in which the chains are 
extended according to the law r d ,~ nd, where the nucleus 
size is ra ,,~ft/2 and nd is the number of units in a branch in 
the nucleus. Further, the structure may be represented by 
a system of spherical layers consisting of blobs growing in 
the radial direction (see Figure 6 below and for further 
details see refs. i and 2). Near the nucleus the 
concentration is high and the blobs are Gaussian. The 
radial decrease in concentration in this region is described 
by the relationship c(r)-~r -1 (Table 1). As the 
concentration decreases further, the significance of pair 
interactions between units increases, the blobs become 
swollen and the decrease in concentration is described by 
the relationship c(r),~ r -4/3 (Table 1). At given f >  p3/2, Z 
and p values this concentration profile is universal and the 
boundaries of spherical regions do not depend on n. 
However, at low n values the star does not grow up further 
than t he size of the nucleus and the occurrence of all three 
internal regimes requires relatively high n values. It 
should be noted that since radial decrease in unit 
concentration occurs more smoothly than 1/1" 2, m o s t  units 
are located on the periphery of the star, so that the average 
concentration cx0 differs from cx,~n = Cxo(r = Rxo ) only in 
a numerical factor close to unity. Hence, the properties of 
the star (Table 1) are determined by its peripheral part. 
This fact was used in ref. 1 in the construction of the 
diagram of state of an isolated star (Figure 2, Table 1). 
Regions I x of the diagram correspond to the state of the 
outer part of the star macromolecule (for further details 
see ref. 1). 

(4) The stretching of branches is at a maximum in the 
star nucleus and decreases with distance from the centre 
to the periphery, just as unit concentration. 

RESULTS 

Star overlapping in solution; threshold concentrations 
Let us consider a solution of star-branched 

macromolecules at volume concentration c. Before 
carrying out a detailed analysis, a simplified picture will be 
considered in which an isolated star is characterized by 
average concentration Exo (Table 1). The concentration at 
the threshold of star overlapping is determined from the 
condition * - -  C x -- CxO 

n - 4 / 5 ( z p ) - 3 / s f  /5 x =  + , m f  

c * ~  - n-1/2p-a/af  x/4 x = ®  (6) 

n - 1 / 2 f p  -3/2 x = G  

where x characterizes the region of the diagram for an 
isolated star and the state Ia is not considered. 

When the stars overlap, their swelling should decrease, 
and the size of the star, i.e. the size of star branches, should 
approach that of similar linear chains in a semidilute 
solution 6-9 

R , ,  fn l /2(zpc-1)  1Is 
x~CJ'~'~nl/2pl/2 

x = +  
(7) 

x = mf, O,G 

In order to evaluate the threshold concentration c** of 
transition to the regime of a semidilute solution of linear 
chains (regime II in symbols used in ref. 9), it will be taken 
into account that at c>c*  the intramolecular 
concentration of the units of a star cannot exceed the 
solution concentration. Hence at c > c** 

nf 
n~(c----S <~ c (8) 

to give 

:n -4 /S (zp) -a / s f  a/5 x =  + 

c** >1 ( n -  1:2p- 3/2f x = mf,® (9) 

Comparison of (6) and (9) shows that the values of c* 
and c** (x=  +,mf,®) differ markedly. This difference 
implies that an additional regime c* < c < c** 
(subsequently referred to as III) exists in the diagram of 
state of the star solution. In this regime the stars are not 
isolated, c > c*, but retain the memory of their topology so 
that the size of branches in stars R is greater than that of 
similar linear chains in a semidilute solution. By analogy 
with (8), the evaluation of star size may be written as 

i /n f~  l /3 

where Rx(c) is determined by (7). 
In order to check the conclusions of the simplified 

consideration and to carry out further analysis of star 
conformations and solution structure, it is necessary to 
take into account the radial distribution of density in a 
star (Table 1). 

Semidilute star solution, region I I I  
Let us consider a solution of stars at a concentration c 

higher than the threshold concentration c* (x = + ,mf,®) 
(equation (6)). According to ref. 2 and the general picture 
of semidilute polymer solutions 6-9, it will be assumed that 
the denser inner star parts at a concentration Cxo(r) > c are 
not affected by the perturbing action of other stars, which 
is spread only to the outer star parts at a concentration 
Cxo(r)<c. 
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The density profile with respect to the centre of the 
particular star is given by 

c(r)"~{~ ~°(r) p~<r<R~r<P~ (11) 

where Rx is the overall size of the star in a semidilute 
solution and Px is the radius of its inner unperturbed part 
determined from the condition 

C~o(r =,o~) = c (12) 

In subsequent discussion the inner part of the star will be 
called a core in order to distinguish it from the star 
nucleus of radius rd and it will be assumed that p~ > rd. 

Equations (6) and (12) and the data in Table 1 are used 
for the determination of the radius of the unperturbed 
part of the star 

p ~ C  314fl/2(zp)-'/4~-R,o x= +,mf 

( , ~ - l F l 1 2 . - I I 4 ~ D  C*x X : O  (13) 
J H - -  ~XxO-- 

C 

and the fraction of its units in this part 

~ (C - 5/4fl /2 ( T p ) -  3/4rt - 1 ~ (C,x/C)5/4 
Vx - c -  , 

x =  -t-,m I 
x = ®  14) 

Other nfll - v~) units of the given star are located in the 
spherical layer px < r < R~, which can also contain similar 
units of other neighbouring stars. Let the units of the given 
star constitute the f rac t ion/~ ~< 1 of all the units in this 
spherical layer. The overall size of the star R~ is 
determined by the obvious condition 

~ f n ( 1  - vx) 
R~ _ p 3 _  (15) 

cp~ 

Equations (7) and (16) give the degree of branch stretching 

(Cx**~ 5/12 
,, x =  + 

R~ 
- [  c** 2/a (18) 

where c** is determined by the sign of equality in (9). 
Now let us consider the possible values of #~ and k~ in 

regime III. The case ~ = k~ = 1 corresponds to complete 
mutual impermeability of stars behaving as quasiglobular 
particles 12 

In the concentration range considered here, the star 
solution is a densely packed system of segregated stars. 
Mutual impenetrability and dense packing of stars lead to 
the existence of at least short-range order in star 
arrangemem 

a V//X//,/3 b 

/ 

I 

N 
x 

! 

/ 

(numerical coefficients have been omitted, as before). 
In order to simplify subsequent analysis, it will be 

assumed that c,>c*. Then we have Vx< 1, px<R~ and 

Rx.~kx(f~) 1/3 fc* \1/3 ~-kxRxo~ c ) x =  +,mf, O (16) 

p~l'k~Z(c*/c)5/12 x =  +,mf 

k~ (Cx/C) x = ®  R~ / - t  , 2 / 3  (17) 

where the value of kx = ~tx 1/a ~> 1 requires further 
evaluation. 

It should be noted, however, that apart from the 
dependence on this evaluation, it follows from (16), which 
is in complete correlation with (10), that at Cx* < c  < Cx** 
(x=  +,mf,®) regime III exists in which the outer star 
parts remain extended. In fact, let us consider (16) for the 
case of the minimum star size, i.e. at Px = kx = 1. Non- 
extended chains (branches) consisting of n(1-vx),~n 
monomers in a semidilute solution at a concentration c 
are characterized by the size R~(c) according to (7). 

( ) 

I 

@, 
I 

(2) 
F i p r e  3 Scheme for the state of semidilute solution of stars in regime 
III, at two concentrations C(1)<C(2): (a) complete star segregation, 
R = L/2; (b) overlapping of outer star parts, R = L, kx = 2. The spheres are 
star cores, outer parts of branches are shown only for the middle star 
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This situation is on the whole also retained with the 
assumption that the outer parts of the stars can overlap 
(#x<l,  kx>l )  because they contain non-overlapping 
cores with grafted radially extended chains. 

Figure 3 shows the scheme for the structure of solution 
at two concentrations. Case (a) corresponds to the 
assumption of complete impermeability of stars, 
#x = kx = 1, and case (b) corresponds to the overlapping of 
the outer parts of stars with the maintenance of the short- 
range order. 

Diagram of state of star solution 
Figure 4 shows the temperature-concentration 

diagrams for solutions of star-branched macromolecules 

with flexible, p =  1 (Figures 4a and 4d), and stiff, p>  1 
(Figures 4b and 4c), branches at different numbers of 
branches: p3/2<f<nl/Ep-a/2 (Figures 4a and 4b), 
l < f < p  a/2 (Figure 4c) and f > n  1/2 (Figure 4d). The 
diagrams contain the regions I x, II x and III at x = +,  mf 
and O (and in the case f <  pal2 they also contain additional 
Gaussian regions Ic and II6). Equations of boundaries 
between the regions are listed in Table 2 and the sizes of 
stars are given in Table 3. 

Regions I x (x= +,mf, O,G) correspond to dilute 
solutions containing isolated stars (see Figure 2 and 
Introduction). 

Regions II x (x= +,mf,®,G) are usual regions of 
semidilute solutions of linear chains in which each branch 

"v 

z® 

a 

" ~ ÷  

Y 
Tr® 

Trr 

b 

• ]Tr 

~rnf 1"1" 6 

c > c 

'T" 

I G 

rrmf 

I10 

C d T 

18 n-r 

jw  ~ 

0 
Figme 4 T•mp•ratur•--c•ncentrati•ndiagrams•fs••uti•ns•fstar-branchedmacr•m••ecu••swith•e×ib•e,p=•(4aand4d),andsti••p>•(4band4c), 

3f2 112 3/2 b rancheswi thd i f fe ren tbranchnumbers :p  <f<n p- (4aand4b); f<p3/2 (4c); f>n 1/2 (4d) 
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Table 2 The boundaries  between the regions in the (z-c) diagram 
(Figure 4); c' = cn I/2, z' = zn 1/2 

Io--Imf Imf-I + I + ,mf-III 

z' ~ f l / 4 p -  3/8 Z' ~fl /4p3/2 C'~  ( z 'p ) -  3/5f2/5  

Io-  I I I  I II-IIo~af I I I - I I  + 

c' ~ f l / 4 p -  3/8 C' ~ f p  - 3/2 c' ~ (z'p)- 3/5fa/5 

II +-llmf llmf-II® Imr-I G 

z' ~ c'p 3 z' ~ c' r' ~ p312f- i 

IG41G I !G4Imf  I I G - I I o  

c' ~ f p -  3/2 C' ~ z ' -  t c' ~ 1 

Table 3 The star sizes and intramolecular concentrat ion 

I x I I I  II  + IIo,mf,G 

R x R~o (Nc 1)1/3  Nl /2 f - ! . /2 ( zpc- l ) l /8  N l l2 f - l /2p l /2  
c~ Cxo c N - l / Z f 3 / 2 ( z p c - t )  -3Is N - l / z f 3 / 2 p  -3/2 

behaves as an individual polymer chain in the 
corresponding regime 6'9. They differ from the semidilute 
solutions of linear chains because of the retention of 
central denser star cores. This difference does aot  affect 
the properties of individual branches and the 
thermodynamics of the solution as a whole (when the part 
of units in the cores is small). 

Region III is the region of the quasiglobular state of 
stars characterized by a universal dependence of star size 
on the number of units N--- nfand solution concentration 
c (with the assumption that kx=constant). Region III 
separates states I x and IIx at x =  +,mf, O. The only 
exception is the case of the Gaussian state Ic when star 
swelling is absent both in region IG and in regions IIG, Iio 
and Ilmr neighbouring on the side of high concentrations. 

Figure 5 shows the diagram of state in (fc) coordinates 
at z, N=constant  (only the case of flexible chains, p =  1, is 
considered). It is clear that the increase in the degree of 
branching f of the macromolecule at a fixed degree of 
polymerization leads to increase in the overlapping 
concentration c* and to the appearance and broadening 
of region III of the phase diagram. At highfvalues region 
III exists up to the maximum concentrations attainable 
(Figure 4d). 

Blob picture of a star solution in different regions 
Figure 6 shows the blob pictures of a star solution 

constructed for the case of flexible stars, p = 1. 
Figure 6a(I) shows the blob picture of an individual star 

(region I). The nucleus of radius r d consisting of greatly 
extended chains is located in the centre and surrounded 
by spherical layers of growing blobs. Each branch is a 
radially oriented system of blobs in the absence of 
tangential order, i.e. the branch is located in the cone with 
a tangentially bent axis. 

Figure 6b(I) shows a system of blobs belonging to one 
branch in its cone with the solid angle 4n f -  1 and with a 
straightened axis (for greater details see ref. 1). 

Figure 6a(III) shows the blob picture of a solution in 
region III. The core of the star retains the same structure 
with a nucleus in the centre and a system of growing blobs 
with radius rd < r < Px. The outer part of the star contains 
blobs of the same size ~x(c) determined 1'9 by the solution 
concentration c 

f('cp)-Z/4c-3/4 x= + 
Cx(C)'~?-l/2pl/2C -1/2 x = m f  

k p  1 / 2  c - 1 X = ~ )  

(20) 

The number of units in a blob is given by 

( ? p ) - 3 t 4 c - 5 / 4  X =  + 

na,x_~ (,c) - t  x = m f  (21) 

C - 2  X = ~ )  

In contrast to the usual semidilute solution, the blob 
sequence is not random for each branch. This fact is 
illustrated in Figure 6bfllI), where one branch is shown in 
its cone with straightened axis. The inner part of the cone 
is occupied by the branch part belonging to the star core. 
The number of outer blobs of the given branch located in 
the external part, i.e. in the truncated cone, is n(1 - vx)/n~.x. 
Moreover, the branch may occupy either all the blobs of 
its cone nearest the centre or only a part of them, leaving 
the others to the branches of neighbouring stars. The 

N % 

N % 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  | 

I 0 ~,, I l >I~. (t / i 

N-U2 

a 

~ C 

b 

I N 2/3 . . . . . . . . . . . .  / I  

. J f / /  m ! 

~ C 

N-% 
Figure 5 Diagram of state of a solution of flexible-chain stars (p = 1) in 
(f, c) coordinates at z, N = constant  at z = 0 (5a) and z = 1 (5b) 
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b 

IT 

# 

ITT 

Figm'e 6 
flexible-chain stars, p = 1 

minimum value of the size of the filled part of the cone 
corresponds to a dense packing of their blobs 

R . ~  { , ' t ~  (22) 

(cf. equation (16)). Comparison of this value with the size 
of a random coil consisting of blobs (cf. equation (7)) 

[ n ,~1/2 
R ~ ( c ) ' ~ # , ~ )  ~x 23) 

rrI 

(a) Blob picture of solution and (b) system of blobs of a single branch in its cone with straightened axis in regimes I, II and III. The case of 

clearly shows that in accordance with the previously 
obtained result we have Rx> Rx(c), at * ** cx < c < c x , i.e. not 
only the inner but also the outer parts of stars remain 
extended in the radial direction. The system of both inner 
and outer blobs in region I I I  retains radial orientation. 

Figure 6a(II) shows the blob picture in regions II. In this 
case the orientational order and branch extension are 
retained only in the star cores. The outer parts of branches 
are usual random coils of blobs; the grafting to the star 
core does not in the least affect their properties. 
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The behaviour of the solution of flexible-chain stars 
shown in Figure 6 is on the whole independent of solvent 
strength. The value of r, however, affects the 
conformations of chain parts in the outer blobs (and in the 
blobs located at the periphery of the core) swollen under 
conditions of a good solvent and the Gaussian blobs in the 
O-region. With increasing solution concentration, the size 
of these blobs decreases and the range of z values 
corresponding to the O-region increases correspondingly 
(cf. ref. I). 

DISCUSSION 

Main result and comparison with other theroetical papers 
The main result of the present paper is the diagram of 

state of the star solution (Figures 4 and 5)containing three 
types of regimes: I x, isolated stars in a dilute solution, III, 
impermeable (or almost impermeable) stars in a 
semidilute solution; and IIx, a semidilute solution of star 
branches. 

This diagram is based on the results of scaling 
analysis ~'2 according to which the branches of an 
individual star in regimes Ix (apart from regime IG for stiff- 
chain stars) are always extended. The general structure of 
the diagram with three types of regime and the blob 
picture of the solution in these regimes (Figure 6) is 
determined by inequality (4) rather than by the specific 
values of exponents fix and 7x for individual stars 
(equations (I) and (2)). It should be noted that in the 
diagrams in Figures 4a-c it was assumed that the core of 
the star decreasing with concentration nevertheless 
remains larger than its nucleus up to concentrations 
c > c** corresponding to the boundary between regimes 
III and II x. If this condition is not obeyed, the boundary of 
III and IIx is displaced towards higher c and is 
unattainable. However, the main feature of the diagram is 
retained: the transition from regimes I x (x = +,mf, O) to 
regime III rather than to region II x (with increasing 
solution concentration, Figure 4c). 

The diagram of state of a star solution has previously 2 
been constructed on the basis of the blob picture of 
solution. Daoud and Cotton 2, however, have not 
considered regime III, assuming that regimes I x are in 
direct contact with regimes II x in which the outer chain 
parts are a random coil of blobs. They have not paid 
attention to the fact that this assumption leads to a 
contradiction: as has been shown above, the 
concentrations of the stars' own units in their external 
layers becomes higher than that of the solution. 

In this connection it should be noted, that the scaling 
concepts ~ 3 widely used recently for the construction of the 
diagrams of state of various polymer systems always 
require an independent and careful analysis of the number 
and type of possible regions of state. If any of these regions 
is omitted, as in ref. 2, the non-existent boundary between 
regimes is thus postulated and inadequate conditions of 
the crossover of physical values at this boundary are 
established. This automatically leads to erroneous power 
dependences, at least in one of the regions artifically 
introduced into contact (see, e.g. ref. 14 and the discussion 
in ref. 9). 

In particular, in ref. 2, the error in the expression for the 
size of the outer part of the star at c > c* also leads to an 
erroneous conclusion about the existence of an additional 
threshold concentration c~x, such that at c* < c<  clx the 

star size is determined by its core, whereas at c>  ctx it is 
determined by its outer part. As a matter of fact clx differs 
from c* only in the numerical coefficient, i.e. it coincides 
with c* in the approximation used. Hence it was t~ossible 
to take into account only the properties of outer star parts. 

Segregation of stars in regime III 
As has been shown in the earlier results section 

'Semidilute star solution, region III', in regime III 
complete or partial star segregation should be observed. 
Complete segregation leads to smaller losses in the elastic 
free energies, equation (18). On the other hand, the 
entropy factor favours the interpenetration of branches of 
neighbouring stars. 

The complete solution of the problem of degree of star 
segregation and the determination of the coefficient kx (in 
equations (16) and (17)) are outside the scope of this paper. 
Our tentative evaluations show that complete segregation 
is more advantageous thermodynamically because of the 
lower degree of branch stretching. A similar conclusion 
may be drawn from a more detailed analysis carried out 
by de Gennes ~5 for another system: a layer of chains 
grafted onto a plane and immersed in a solution of similar 
but mobile chains. 

Effects of the segregation of macromolecules have also 
been considered for the semidilute chain solutions in 
limited volumes~ 6,~ T in which the properties of the system 
(existence of restrictions) lead to chain stretching, whereas 
segregation favours the minimization of this stretching. 

As already indicated, completely segregated stars in 
region III are quasiglobular particles with a denser core 
and an outer part with a constant density determined 
by solution concentration (equations (16), (17) and (19)). 
This also remains true for partial overlapping of the outer 
star parts when the degree of overlapping kx depends 
neither on the star characteristics f and n nor on the 
solution concentration c. 

Stars and block copolymers 
It is of interest to point out the analogy between the 

solutions of macromolecular stars investigated in this 
paper and the micellar solutions and superstructures of 
block copolymers. The difference between those systems 
consists of the fact that in our case the structural element 
is a star with a given chemical structure (fixed number of 
branches f). For block copolymers the structural 
element itself(for example, a micelle) is formed from linear 
chains of the same type as a result of effective attraction 
due to poor solubility and/or to the incompatibility of 
components. Hence, the number of chains f i n  a spherical 
micelle equivalent to that of star branches is determined 
by the characteristics of the block copolymer. 
Comparison of results of refs. 1, 5 and 18 shows that the 
individual star behaves just as the individual spherical 
micelle (dilute solution of stars or micelles) of a two-block 
copolymer containing a soluble and a shorter insoluble 
block (region III in ref. 18). In particular, the relationships 
given in Table 1 are obeyed for both systems. 

When concentration increases, these block copolymers 
form a regular structure. The shorter blocks form a part of 
spherical domains, whereas soluble blocks form a matrix 
containing a certain amount of the solvent. Common 
features of this superstructure 5'~ 9 and of a star solution in 
regime III are the presence of an impermeable core, the 
retention of radial extension of chains grafted onto the 
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cores, partial or complete segregation of chains belonging 
to different domains (stars) and the existence of at least 
short-range order in the arrangement of domains (stars). 

As a result of the possibility of a change in the chain 
number in domains of the block copolymers with 
increasing concentration of the polymer, regime II I  is 
stable even in complete absence of solvent (cf. ref. 19), 
whereas the star system passes into regime IIx with 
increasing concentration. 

(Tp)3/4¢ TM, gmf = "t'C 2, 7Z 0 =C 3. So the conclusion about the 
singularity in the concentration dependence re(c) near c* is 
confirmed by the results of our paper. Note  that the origin 
of this singularity near the overlap concentration c* is the 
mutual impermeability and segregation of stars near the 
boundary c* of the Ix regime and in the whole regime IIIx. 
A similar effect has been noticed by Daoud and de 
Gennes 16 for a system of chains trapped in a capillary. 

N O T E  A D D E D  IN P R O O F  

Recently we have received two Preprints by T. A. Witten, 
P. A. Pincus and M.E.  Cates, and by T.A. Witten and 
P. A. Pincus, where the authors, by using the results of 
ref. 2, considered the concentration dependence of 
osmotic pressure re(c) for a solution of flexible (19 = I) stars. 
It has been shown in, the preprints that at overlap 
concentration c* there is no crossover between ideal gas 
law d~/dc~-I t /c~- (n f )  -~ for dilute solution and the 
dependence d~z/dc", rc/c ~- c s/4 for semidilute solution (in 
good solvent). A rapid change in ~z(c) O n f  a/2 times) near c* 
permits the authors to come to the conclusion that at c* 
the star's solution should crystallize into an 'ordered steric 
colloidal crystal'. 

This conclusion is in complete agreement with the 
results of our paper, where the structure of star-branched 
macromolecule solution in the quasiglobular regime II I  
(which separates regimes of dilute (Ix) and semidilute (IIx) 
solution) is investigated. 

As an analysis shows, despite the difference between the 
structure of solution in regime II I  and in semidilute 
regimes IIx, thermodynamically, regime II I  consists of 
regimes I I I  x, the scaling concentration dependences n(c) in 
which coincide with those of regime IIx, i.e. n + =  
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